Алгебра в программе Mathematica


Пример 22



Пример 22




Но на самом деле восстановить его очень просто.
k=RealDigits[m,16] {{3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,2, 8,8,4,1,9,7,1,6,9,3,9,9,3,7,5,1,0,5,8,2,0,9,7,4,9,4,4,5,9,2,3,0,7,8,1, 6,4,0,6,2,8,6,2,0,8,9,9,8,6,2,8,0,3,4,8,2,5,3,4,2,1,1,7,0,6,8},!}
Если первый аргумент имеет вид {список, n}, то n рассматривается как показатель степени (основанием степени служит основание системы счисления), на которую умножается число, восстановленное по списку цифр. Если список имеет вид {список-l, (список-2}}, то список-2 рассматривается в качестве периода систематической дроби.

Функция IntegerDigits теряет знак числа, поэтому FromDigits [IntegerDigits [n] ] равно абсолютной величине Abs [n], а' не n.

"Цифромания": как посчитать девятки в десятичном представлении е — функция DigitCount

Система Mathematica позволяет вычислить столько констант! С точки зрения "цифроманов" было просто преступно не воспользоваться этим и не узнать, например, как распределены единицы и нули в числах От 1 до 256, записанных в двоичной системе, или же не посчитать количество девяток в десятичном представлении основания натуральных логарифмов. Именно для этого (и многих других полезных вещей) как раз и предназначена функция DigitCount. Вызов DigitCount [n, b, d] возвращает количество цифр d (предполагается, что это цифра системы счисления с основанием ь) в числе n, записанном в системе счисления с основанием b. Рассмотрим сначала простой пример. Вот как найти"представление числа 175! в системе счисления с основанием 25.








Начало  Назад  Вперед


Книжный магазин