Алгебра в программе Mathematica

Градостроительство разработка проекта планировки территории.

Факторизация чисел Фибоначчи



Факторизация чисел Фибоначчи



Давайте теперь рассмотрим несколько иной пример. Попытаемся факторизовать числа такой последовательности, которая не может рассматриваться как некоторое тривиальное изменение последовательности аn с целым основанием а. В качестве такой последовательности можем выбрать, например, последовательность Фибоначчи. Напомним, что последовательность Фибоначчи рекуррентно определяется так:

F1 = F2 = 1, Fn+2 = Fn+1 +Fn.

Если Fn — простое, то либо n = 4, либо n — простое. Теперь построим таблицу факторизации чисел Фибоначчи.

Для этого напишем программу, в которой предусмотрим вывод не только разложения числа Фибоначчи, но и самого числа.
Do[Print[n,":",Fibonacci[n]], ":", FactorInteger[Fibonacci[n]]],{n,270}]
Данная таблица недаром содержит числа Фибоначчи Р„ для п вплоть до 300. Дело в том, что до 1963 года (а это совсем недавно с точки зрения многотысячелетней истории теории чисел) было известно, что числа ФибоначчиFn являются простыми для n = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47. Упорные же поиски других простых чисел Фибоначчи в то время никаких результатов не дали. Так что с этой точки зрения наша таблица содержит несколько совсем нетривиальных открытий!












Начало  Назад  Вперед